PHYSICAL REVIEW E, VOLUME 64, 056705
Semiclassical quantization by harmonic inversion: Comparison of algorithms
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Harmonic inversion techniques have been shown to be a powerful tool for the semiclassical quantization and
analysis of quantum spectra of both classically integrable and chaotic dynamical systems. Various computa-
tional procedures have been proposed for this purpose. Our aim is to find out which method is numerically
most efficient. To this end, we summarize and discuss the different techniques and compare their accuracies by
way of two example systems.
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[. INTRODUCTION The frequencies of the sign&B) are the semiclassical ap-
proximations to the quantum eigenvalugg of the scaling
Semiclassical trace formulas relate the spectra of quantugarameter. By the same token, harmonic inversion of signals
systems to the periodic orbits of the pertinent classical syswith the functional form(3) also plays a key role in the high
tems[1]. They yield expansions of the quantum responseesolution analysis of the density of state$E)=2,5(E
function of the form —E,) of quantum spectra, in an effort to extract information
about the underlying classical dynam{&-5].

dy _ In practical applications, the sign@) is always known in
Q(E)ZEk mzé Apce'Seo'™. (1) a finite range 6<s<Sy only. The signal lengtByq is
often fixed or at least hard to increase, e.g., for periodic orbit

] quantization of classically chaotic systems where the number

Here,E, are the energy eigenvalues of the quantum systemyt periodic orbits proliferates exponentially with the signal
di are their multiplicities, S, is the action of a classical |ength. To obtain the optimum results from the harmonic
periodic orbit, Ay, is an amplitude that can be calculated jnversion procedure, it is essential to choose an algorithm
from classical mechanidsncluding phase information given that allows one to extract the most precise estimates for the
by the Maslov inde)( and the sum on the right'hand side Spectra| parameter$wk,dk} from the Signa' of a given
extends over all periodic orbits and usually diverges for realength s,
energiesE. Thus, the quantal information cannot be ex-  various computational procedures have been proposed for
tracted directly from the semiclassical expansion. the harmonic inversion of signals of the ty(®. However, a

One particular and widely applicable method to overcomesystematic study of the relative merits and demerits of the
the convergence problems of the periodic orbit sum is semimethods and a quantitative study of their efficiencies is still
classical quantization by harmonic inversi@3]. By a Fou-  |acking. To remedy this situation, we summarize and discuss
rier transform of Eq(1) the problem of semiclassical quan- different techniques of harmonic inversion and compare their
tization can be recast as a harmonic inversion problem, vizgccuracies in the application to two simple albeit typical ex-
the extraction of the frequencies,=E,/# and amplitudes ample systems for which exact trace formulas are known.
dy from a given time signal The aim is to pin down the numerically most efficient

method for harmonic inversion.

C(t)=> dee 'K, )
K II. HARMONIC INVERSION OF é FUNCTION SIGNALS

Especially intriguing, and important, are systems possessing Due to the finite signal lengt.,, the analysis of the

a classical scaling property, i.e., the classical dynamics doeggnal by conventional Fourier transform is limited by the
not depend on an external scaling parametend the action uncertainty principle,” wh_lch states that in a signal o_f f|n|t¢
Spo=WS,, Of periodic orbits varies linearly with, with s,,  1€Ngth Spa, two frequencies can only be resolved if their
the scaled action. This is not a severe restriction since iflifference is larger than/Sy.,. The uncertainty principle
covers a variety of systems, such as systems with homog&an be circumvented by the application of high-resolution
neous potentials, billiard systems, or a hydrogen atom irnethods[6,7] that extract a discrete set of frequencies and
static external fields. For scaling systems the semiclassic&mplitudes without imposing argy priori restrictions on the
signal that has to be harmonically inverted has the specidrequencieswy. However, an uncertainty remains in the
form of a sum ofé functions with peaks at positions given weaker form of the “informational uncertainty principle”

by the scaled actions,, of the periodic orbits [7], which states that the signal leng8,, required to re-
solve the frequencies is given by

C(8)= 2 Apod(S Spo)- ©) S 470() @
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in terms of the local average density of frequenaids).  duency filter is applied by subjecting the signal to a discrete
Since this relation involves the average instead of the miniFourier transform, selecting the Fourier components in the
mum spacing between frequencies, the signals can usually fg¢auency interval of interest, and applying an inverse Fou-
significantly shorter than required by the Fourier transform,l1€r transform to them. The resulting band-limited signal
Harmonic inversion of the signdB) is a nontrivial task contains only a small number of frequencies in the chosen

for the following two reasons. First, the number of frequen-imerval and can, therefore, be further processed, in the sec-

cies contained in the signal is usually large, which impliesOnd step, by conventional high-resolution methods such as,

. . L . e.g., linear prediction or Padgproximantg9,10]. DSD ef-
that simple methodg for solving the harmonic inversion IorObfectively uses, in this processing stage, the operational part
lem may be numerically unstable. Second, the special func-

) , . .~ of the discrete version of FID7], which constructs small
tional form of a signal as a sum éffunctions does not fulfill

L ) ) matrices of a generalized eigenvalue problem directly from
the prerequisites of several established algorithms@a}  igitized points of the band-limited decimated signal. The

should be known on an equidistant grig=n7, with N psp technique is designed for signals given on an equidis-
=0,1,2... [7,8]. We briefly review the four numerical that tant grid but can be applied to thfunction signal(3) after
which so far have been successfully applied to the harmonigonyolution with a narrow, e.g., Gaussian function in the
inversion of signalsC(s) given as a sum ob functions. same way as explained abo(gee method )1
Method 1: Discrete filter diagonalizatio® powerful tool The DSD method of Refl8] is easy to implement as it
for the harmonic inversion of signals given on an equidistanbasically resorts to standard algorithms for discrete Fourier
grid is the filter-diagonalizatiorfFD) method of Wall and transform and matrix diagonalization. However, the applica-
Neuhausef6] in the version of Mandelshtam and Tay|[all.  tion of the low-resolution Fourier filter in the first step of the
The basic idea is to introduce a set of basis functions localmethod implicitly assumes periodicity of the sigitedith the
ized in frequency space and to recast the harmonic inversioperiod equal to the signal lengthin which case the DSD
problem as a generalized eigenvalue problem. For a suitabféter is exact. In general, of course, this condition is not met,
choice of the frequency window the subset of frequencieso that only approximate filtering can be achieved. There-
located in that window can be obtained by solving a generfore, DSD must be expected to be less accurate than FD
alized eigenvalue equation with small matrices. (method 1 for frequencies close to the borders of the win-
To evaluate the signaB) on an equidistant grid, thé  dow, or when very short frequency windows are chose®e
functions must be given an artificial width that spans sev- the discussion in Sec. )lI
eral grid points, i.e.,c>r. This regularization can be Method 4: 6-function decimated signal diagonalization.
achieved by convoluting the signal with a narrow, e.g.,The DSD techniquémethod 3 can be modified for a more
Gaussian function. In this form the FD method has beenflirect application to thes-function signal(3) without the
applied in Refs[2,3] as a tool for semiclassical periodic necessity of convoluting the signal with a narrow, e.g.,
orbit quantization. Gaussian function. Because the sigils) is given as a
The convolution of the signaC(s) results in a damping periodic orbit sum ofs functions, the ‘filtering’ step can be
of the amp|itudegjk_>d(k”):dkexp(—wﬁgZ/z)_ The widtho performed analytically by replacing the discrete Fourier
of the Gaussian function should be chosen sufficiently smalfiransform of method 3 with the continuous form of the Fou-
to avoid an overly strong damping, e.g., by setting rier transform and expressing the integrals in terms of peri-
<|Wmal ~ Wherew,., is the largest frequency of interest. odic orbit sums. This technique was proposed in Ref).
To properly sample each Gaussian a dense grid with suffilhe application of the analytical filter for a rectangular fre-
ciently small step size#~¢/3) is required. Therefore, the guency window [wo—Aw,wo+Aw] results in a band-
convoluted signal to be processed by FD usually consists dfmited (bl) signal[11]
a large number of data points, in particular when high fre-
quency regions of the signal are to be analyzed. The numeri- Sin (S—Spo) Aw]
cal treatment of such large data sets may suffer from round- Cb|(S)=E Apo— < ©
ing errors and loss of accuracy. po
Method 2: 6-function filter diagonalizationThe artificial
smoothing of the signal can be circumvented when followingwhere thes functions are basically replaced with sinc func-
a different approach suggested by @eaid and Delandgs].  tions [sincx= (sinx)/x]. The band-limited signa(5) can be
In contrast to Ref[7] where the signal is assumed to be discretized with a small number of points and further pro-
known on an equidistant grid, Greud and Delande start cessed, in the second step, by conventional harmonic inver-
from a continuous-time formulation of the FD algorithm sion methods as described abdgee method 3).

(S—Spo) o, ®

close to the original ansatz if6]. Integrals involving the In practice, the band-limited signal can only be evaluated
S-function signal(3) can then easily be calculated and ex- approximately because the signal is only known up to a finite
pressed in terms of periodic orbit sums. length. Since the sinc functions decay slowly at infinity,

Method 3: Discrete decimated signal diagonalizatiéim.  peaks well beyond the end of the known signal may have an
alternative method to FD for high-resolution signal processinfluence on the band-limited signal points. Omitting contri-
ing is decimated signal diagonalizatigpSD), which was  butions from the(unknown peaks beyond the limit of the
introduced by BelKiet al.[8]. DSD is a two-step process for given signal amounts to the assumption that the signal be
harmonic inversion. In the first step a low-resolution fre-zero outside the given range. Note that this filter differs from
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the low-resolution filter of method 3 where the signal is im- x discrete FD + &function FD

. L o discrete DSD © 3-function DSD

plicitly assumed to be periodic. . : . ' : ;
In summary, the four methods can be classified according 10_: @ () .
to whether they are discrete-time algorithtngethods 1 and 8 %[ 8. on I% o
3), which require a regularization @tfunction signals to be & 00 | ML I "o 0" ]
discretized, or continuous-time algorithms adapted to £ 1072 T "0, oot T
S-function signalgmethods 2 and )4 Alternatively, they can 18-‘6 i T teagfiiogee ]
be classified into FD methodsnethods 1 and 2) and DSD . AR RS B a L s e s
methods(methods 3 and ¥where the low-resolution “filter- 1o . T9 i
ing” and high-resolution signal processing is performed in d 18—8 - 8 8 +.8 :_
two separate steps. 518:2 i **:agagaﬁ** :_256 g.;. _
= 10_14 i ML L T +:€é;§é;sgé§¥ ]
IIl. NUMERICAL EXAMPLES AND DISCUSSION 10'16-::::::::::::::::::?'.::::: ?::::::::?
To quantitatively assess the relative performances of the 18.2 @ :;(f) ]
different algorithms, we present a comparison of the numeri- & qg8 | Ej 8 ®° o
cal accuracy achieved by all of these methods for two simple g 10000 e, e« Tall e
but archetypal examples, viz., first, the high-resolution analy- = 1% [ 38R T Fetex s s an? ]
sis of the spectrum of the harmonic oscillator and, second, e N S

the search for the zeros of Riemann’s zeta function as a 5 10 15 5 10 15

mathematical model for periodic orbit quantization in chaotic Re w/2n Re w /2

systems. We choose these systems because they possess ex- . _
act trace formulas, so that the decomposition of the semiclas- FIG. 1. Imaginary part¢absolute valugsof the frequencies

sical signal in a sum of exponentials is known to be exact. extracted from a harmonic oscillator signal of length,= . Sym-
bols X, +, [, and © denote the methods 1 to 4, respectively.

Windows are[10—Aw,10+Aw] with Aw= (a) 4.5, (b) 5.5, (¢

A. Harmonic oscillator 6.5, (d) 7.5, (e) 8.5, and(f) 9.5.
The one-dimensional harmonic oscillatwith w=1)
has energy eigenvalués,=n+3, n=0,1,2.... ltsdensity

If the analysis of the signal were exact, all imaginary parts
should vanish. Therefore, an inspection of the sizes of the
o °° imaginary parts allows us to check the accuracy of the cal-
g(E)=>, S8(E-Ey= > (—1)*?7E.  (6)  culation. We note that this sort of accuracy test can be ap-
n=0 k== plied to all bound systems. If the exact frequencies are
known, as is the case in our example systems, the real parts
The right-hand side of E¢(6) can be interpreted as a peri- can also be compared. The errors of the real and imaginary
odic orbit sum[in analogy to Eq(1)] whereS,=27KE is  parts typically are of the same order of magnitude and ex-
the action of the K times traversedperiodic orbit andd, hibit, at least qualitatively, the same behavior.
=(—1)¥ is the periodic orbit amplitudg.The interpretation Results for the harmonic inversion of the quantum spec-
of thek=0 Thomas-Fermi term is special, see R&2] for  trumg(E) obtained with the four methods introduced in Sec.
more details. The high-resolution analysis of the quantum || are presented in Figs. 1 and 2 for the imaginary parts of the
spectrumg(E) =X _,6(E—E,) should yield equally spaced frequencieso, and amplitudesl,, respectively. For frequen-
real frequenciesw, =27k and amplitudesd,=(—1)% of cies that appear to be missing, imaginary parts of zero have
equal magnitude. Thus, this simple application of harmonitheen obtained by the pertinent method. From figure gayts
inversion to the extraction of classical periodic orbit param-to (f) the widthAw of the frequency filter is increased. For
eters from a quantum spectruf8-5] is ideally suited to the application of methods 1 and 3 the signal has been dis-
compare the efficiencies of the different methods for the hareretized with step widthr=0.002 after convolution of the
monic inversion ofé-function signals. signal with a Gaussian function with widéh=0.006. In all
Since the signal is periodic with periaddE=1, an integer  cases it can be seen that the precision achieved decreases to
signal length would render the low-resolution Fourier filter the boundaries of the frequency window. The reason is that
of method 3 exact. To avoid this atypical situation, wenone of the filtering methods is exact and can neither com-
choose signal lengths as rational multiplesmofAccording  pletely remove the influence of frequencies outside the win-
to the informational uncertainty principld) a signal length  dow of interest nor exactly preserve the contributions of fre-
of Enax=2 should suffice to resolve the frequencies. Typi-quencies inside the window. For narrow windows, the FD
cally, Eq. (4) slightly underestimates the required signal methods 1 and 2 outperform the DSD algorithms 3 and 4;
length. We therefore present results calculated with a signdbr wide windows the situation is reversed. The frequencies
of lengthE 5= 7, which means that only three energy lev- obtained by methods 1 and 2 are equally precise for small
els contribute to the signal. To assess the accuracy of thgindows, whereas for wide windows method 2 gains supe-
results, we use the absolute values of the imaginary parts efority and even competes with the DSD methods. In general,
the calculated frequencies and amplitudes as error indicatorthe distance from the window boundaries where a method

of states can be written as an exact trace fornpig
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FIG. 3. Imaginary partgabsolute valugsof locationsw, of
zeros of the Riemann zeta function in the frequency window
[10,10Q0. Symbolsx, +, [, and® denote the methods 1 to 4,
respectively. Signal lengths a&,..= (a) 4.5, (b) 5.0, (c) 5.5, (d)
6.0, (e) 6.5, and(f) 7.0.
acquires its full precision is smaller for the FD than for the
DSD methods. Calculations were carried out with double
precision. For the widest window shown, frequencies havavherep runs over all prime numbers. Equati¢f) is for-
practically been obtained to machine precision. mally identical to a semiclassical trace formula wil,

For all methods, the precision of the amplitudes in Fig. 2=wminp corresponding to classical actions andpp,
is somewhat lower than that of the frequencies in Fig. 1= (In p)/p™2 corresponding to classical amplitudes. With this
because the amplitudes are calculated from the eigenvectoifsterpretation, the Riemann zeta function can be used as a
of a generalized eigenvalue problem, which in general argnathematical model for chaotic dynamical systems, and the
less accurate than the eigenvalues. In particular, the diffelRiemann zeros are obtained by harmonic inversion of the
ence in precision between the frequencies and amplitudes igfunction signal[2]
considerably larger for method 1 than for any other method,
so that even for small windows the amplitudes obtained by
this technique are the least accurédee thex symbols in
Fig. 2.

FIG. 2. Same as Fig. 1 but for the imaginary parts of the ampli-
tudesd, .

5 n
C9)=3 3 2 s(s-minp). ®
p m=1p

Unlike typical semiclassical trace formulas, K@) is exact.
As the zeta function has only simple zeros, the amplitutles

. . . . . obtained from the harmonic inversion of the sig(@l must
It is a peculiar feature of the harmonic oscillator signal 5| pe equal to 1.

that the density of frequencies is constant, i.e., the precision |, Fig. 3 we present our numerical results obtained by
of frequencies obtained from a signal of a given length is theapplication of methods 1 to 4 to extract tfieumerically
same throughout the whole frequency domain. However, "?:omplex valuell Riemann zeros with Re,<100. Ideally,
typical systems the density of states grows rapidly with they 51 esw, should be real. Therefore, the absolute values
frequency, which means that a longer signal is required Q¢ ye imaginary parts of ther, can again serve as a measure
extract higher frequencies. As an example of a system exhilg, - e accuracy of the harmonic inversion process. For the

iting this typical behavior, we discuss the Riemann Zeta.application of methods 1 and 3 the signal has been dis-

function that has served as a mathematical model for perixz, ... - : -
. . N . . cretized with step widthr=0.002 after convolution of the
odic orbit quantizatiorf2,13]. It is well known that, if the P

. . 1 : signal with a Gaussian function with widd=0.006.
zelros' of{(2) on the GO 2 are yvntten asz It is no problem to construct the signéd) for the Rie-

=3 —iw, the density of zeros on the critical line can be ex-, . "o 0c up to quite large maximum val@s, because

pressed apl3] only prime numbers are used as input. However, the periodic
orbit quantization of physical systems usually requires a nu-
merical periodic orbit search that becomes more and more
expensive for longer orbits, especially in chaotic systems,

B. Zeros of Riemann’s zeta function

Inp

1 o
g(w)=— p Ep: mz,l pTQcos{wmln p), (7)
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x disorete FD + 8-function FD Figure 4 presents results similar to those shown in Fig. 3,
o discrete DSD o §-function DSD . . e
S ALY i 75 SR but for the imaginary parts of the multiplicitiey, . The ac-
I (@ W%E? . £ curacy of the results achieved with the different methods
F 1088 T T ox M@»f*}’i resemble those obtained for the imaginary parts of the fre-
E [ %" T TR A quenciesw,, with the exception of method {see thex
{2 _+ +4 ar . +-»+ _ . . . . .
18_14 i T aee 9; @93?#* ) s;r/;?sc:?nthat provides amplitudes with significantly lower
1070 e T e g P '
102 1(b) ﬁgﬁ T o]
104 | T o
Z 100 xxxgééﬂ*ﬂ*** T o o B
108 | . L o s 1 IV. CONCLUSION
é 10710 fm © gjgﬁ#*‘ N L X‘ #4.:4- i
:gﬁ 08 e T Qggg;;f ’ In this paper we have quantitatively determined the accu-
1018 e e | racies of four different algorithms for the high-resolution
102 (o) %fx U] & harmonic inversion ob-function signals, by applying all al-
- ]8.6 i N Ay 5 3;3 gorithms to two, physically motivated, example signals. For
E 191-2 Lo *98’ o . X: *jyjﬁjj*fi‘ 5 sufficiently long signals and broad frequency windows the
N 18.12 o @e%é“? o * & ] four methods provide excellent results of very high accuracy,
* o a . !
1079 - I“e T ?’5@353@98?# LT in the case of the examples selected even close to machine
[ S —— 20 40 60 80 100 precision. However, when either the width of the frequency
Re w, Re wj filter or the signal length is considerably reduced, the accu-

_ o racy of the results obtained by the four methods can vary by
_ FIG 4. Same as Fig. 3 but for the imaginary parts of the mul-severa| orders of magnitude.
tiplicities d . Our calculations show that no general clear-cut answer to
) ) ) _the question “Which method is best in all physical situa-
where the number of orbits proliferates exponentially withtjons?” is possible. In practice, the window width can be
increasing signal length. Therefore, in practical periodic Orbitregarded as a free parameter, i.e., it can usually be chosen
qyantizations the given signal length is often rather short. Irgufﬁcienﬂy large to achieve good results before increasing
Fig. 3 we present the results for the accuracy of the methodsomputational effort or numerical instabilities become a re-
for harmonic inversion for various S|gnall Iengths, increasingstriction. The signal length, on the contrary, is often fixed or
from Sya=4.5 in Fig. 3a) to Sp,=7.0 in Fig. 3f). The gt |east hard to increase. In such a case the choice of the
frequency windoww €[ 10,100 is kept fixed. ~_ algorithm for harmonic inversion of the signal will be essen-
For a fixed signal length, the zeros up to a certain criticakia| to achieve the optimum results. When the signal length is
value can be obtained to a constant precision. Above thgyite at the limit for convergence of the frequencies and
critical frequgncy, the precision decreases rapidly due to thﬁmplitudes, the filter-diagonalizatig¥D) methods 1 and 2
higher density of states. As expected, for all methods theyroyide superior accuracy compared to the decimated signal
critical frequency increases with growing signal length, giagonalizatioDSD) methods 3 and 4. For signals given as
which means that frequencies in regions of higher spectrahe sum ofs functions, method 2 will often prove to be the
density can be resolved. Roughly, the critical frequency isyethod of choice.
deter_m_ineq by the_ informational uncertainty principi. In We conclude by noting that harmonic inversion tech-
fact, itis slightly higher for the FD methods 1 and 2 than for pjgues can be generalized so as to cope with the analysis also
the DSD methods 3 and 4. As before, the maximum accupf multidimensional signals, with important applications in
racy below the critical frequency is obtained by the DSDgther areas of physid44]. The knowledge gained from the
methods. However, above the critical frequency the precisiogomparison of methods for one-dimensional harmonic inver-
yielded by the FD methods is higher. sion in this paper should also serve as a useful guide in
The lowest zero of the zeta function is locatedvat fyture developments and applications of accurate and effi-

=14.1347, not far above the lower boundary of the fre-cient algorithms for multidimensional high-resolution signal
quency window aw=10. For the first zeros a decrease in processing.

accuracy due to the proximity of the boundary can be seen.

Evidently, the influence of the boundary diminishes with in-

creasing signal length. Again, it is considerably more pro- ACKNOWLEDGMENTS
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